Maximum stable sets in analogs of Kneser and complete graphs

نویسندگان

  • Gábor Kun
  • Benoit Larose
چکیده

We prove an analog of results by Erdős-Ko-Rado and GreenwellLovász by characterising the maximum stable sets in special vertex-transitive subgraphs of powers of complete graphs, and proving that these graphs admit a unique optimal vertex colouring, up to permutation of the coordinates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable sets of maximal size in Kneser-type graphs

We introduce a family of vertex-transitive graphs with specified subgroups of automorphisms which generalise Kneser graphs, powers of complete graphs and Cayley graphs of permutations. We compute the stability ratio for a wide class of these. Under certain conditions we characterise their stable sets of maximal size. © 2003 Elsevier Ltd. All rights reserved. MSC (2000): 05D05; 05C99

متن کامل

Symmetries of the Stable Kneser Graphs

It is well known that the automorphism group of the Kneser graph KGn,k is the symmetric group on n letters. For n ≥ 2k + 1, k ≥ 2, we prove that the automorphism group of the stable Kneser graph SGn,k is the dihedral group of order 2n. Let [n] := [1, 2, 3, . . . , n]. For each n ≥ 2k, n, k ∈ {1, 2, 3, . . .}, the Kneser graph KGn,k has as vertices the k-subsets of [n] with edges defined by disj...

متن کامل

Local chromatic number and the Borsuk-Ulam Theorem

The local chromatic number of a graph was introduced in [13]. It is in between the chromatic and fractional chromatic numbers. This motivates the study of the local chromatic number of graphs for which these quantities are far apart. Such graphs include Kneser graphs, their vertex color-critical subgraphs, the stable Kneser (or Schrijver) graphs; Mycielski graphs, and their generalizations; and...

متن کامل

A generalization of the Erdős-Ko-Rado Theorem

In this note, we investigate some properties of local Kneser graphs defined in [8]. In this regard, as a generalization of the Erdös-Ko-Rado theorem, we characterize the maximum independent sets of local Kneser graphs. Next, we present an upper bound for their chromatic number.

متن کامل

Long induced paths and cycles in Kneser graphs

We present some lower and upper bounds on the length of the maximum induced paths and cycles in Kneser graphs. The Kneser graph K(n, r) is the graph whose vertex set is the family of all r-element subsets of { 1, 2 . . . . . n}, and a pair of vertices forms an edge, ff the corresponding subsets are disjoint. Kneser graphs are often used in order to express some properties of a family of sets of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2009